Utility classes and functions ============================= Trilinear interpolation ----------------------- The class :py:class:`~.LinearInterpolationNOGrid` supports linear, bilinear and trilinear interpolation for data on an even grid in 1D, 2D or 3D, with orthogonal or non-orthogonal lattice vectors. Please see the code reference for documentation. Code reference -------------- .. automodule:: envtb.quantumcapacitance.utilities :members: Matplotlib tips --------------- http://www.packtpub.com/article/advanced-matplotlib-part1 :: fig1 = pyplot.figure() fig2 = pyplot.figure() ax1 = fig1.add_subplot(2,1,1) ax2 = fig1.add_subplot(2,1,2) l, = ax2.plot(x, y) m, = ax1.plot(x, y) w, = ax1.plot(x, y+3) t = ax2.set_title('random numbers') l.set_color('red') m.set_color('blue') ax3=fig2.add_subplot(1,1,1) n, = ax3.plot(x, y) w.set_color('red') fig1.legend([m,w], ["line 2", "line 1"]) ax2.legend([l],["line 3"]) The pyplot.someFunction() commands are equivalent to:: ax=pyplot.gca() ax.someFunction() i.e. they are applied to the current axes. The standard procedure would be: * Set up the plot "window" using figure() and subplot() * Execute the plot function (e.g. plot_bandstructure()) * If the function returns lists of lines, you can style them. * The axes have a lines property which is a list of all the lines. You can style them here too. * Set other properties, like x and y limits, legend, other texts that belong to the figure or the subplot (=axes). Workflow recommendation ----------------------- This is not a utility class, but it's the best place to put this information. (Work on this!) * IPython web interface * Use ? for documentation * combine plots and use pyplot.show() * handle data, numpy.savetxt